MATH 5061 Problem Set 6¹

Due date: Apr 21, 2021

Problems: (Please hand in your assignments via Blackboard. Late submissions will not be accepted.)

Throughout this assignment, we use (M,g) to denote a smooth n-dimensional Riemannian manifold with its Levi-Civita connection ∇ unless otherwise stated. The Riemann curvature tensor (as a (0,4)-tensor) of (M,g) is denoted by R.

- 1. Prove that the upper half plane $\mathbb{R}^2_+ := \{(x,y) \in \mathbb{R}^2 : y > 0\}$ with the Riemannian metric $g = \frac{1}{y^2}(dx^2 + dy^2)$ is complete.
- 2. Let (M^n, g) be a complete Riemannian manifold. Suppose there exists constants a > 0 and $c \ge 0$ such that for all pairs of points p, q in M, and for all minimizing geodesics $\gamma(s)$, which is parametrized by arc length, joining p to q, we have

$$\operatorname{Ric}(\gamma'(s), \gamma'(s)) \ge a + \frac{df}{ds}$$
 along γ ,

where f is a functions of s such that $|f(s)| \leq c$ along γ . Prove that (M^n, g) is compact.

- 3. Let (M^n, g) be a complete Riemannian manifold with non-positive sectional curvature, i.e. $K \leq 0$. Show that any homotopy class of paths with fixed end points p and q in M contains a unique geodesic.
- 4. Show that any even dimensional complete manifold with constant positive sectional curvature is isometric to either \mathbb{S}^{2n} or \mathbb{RP}^{2n} , equipped with the canonical round metric.
- 5. Using the identification $\mathbb{C}^2 \cong \mathbb{R}^4$, we denote the unit sphere by $\mathbb{S}^3 := \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$. Let $h: \mathbb{S}^3 \to \mathbb{S}^3$ be the smooth map given by

$$h(z_1, z_2) = (e^{\frac{2\pi}{q}i}z_1, e^{\frac{2\pi r}{q}i}z_2)$$

where q and r are relatively prime integers with q>2.

- (a) Show that $G = \{ id, h, \dots, h^{q-1} \}$ is a group of isometries of the sphere \mathbb{S}^3 with the standard round metric. Prove that the quotient space \mathbb{S}^3/G is a smooth manifold. This is called a *lens space*.
- (b) Suppose the lens space \mathbb{S}^3/G is equipped with the natural Riemannian metric such that the projection map $\pi: \mathbb{S}^3 \to \mathbb{S}^3/G$ is a local isometry. Show that all the geodesics of \mathbb{S}^3/G are closed but can have different lengths.

¹Last revised on April 6, 2021